487 research outputs found

    全球变暖对我国西北地区小麦生产的影响

    Get PDF

    The Multifaceted Role of Hypoxia‐Inducible Factor 1 (HIF1) in Lipid Metabolism

    Get PDF
    Hypoxia‐inducible factor 1 (HIF1) is a master transcription factor and regulates expression of a large number of genes involving many aspects of biology. In addition to HIF1\u27s roles in glucose metabolism and angiogenesis, numerous studies have revealed an emerging role of HIF1 in controlling lipid homeostasis. In this chapter, we discuss that lipid accumulation is related to HIF1\u27s activity in several diseases and the growing evidence demonstrating the functional importance of HIF1 in controlling lipid metabolism. The functions include lipid uptake and trafficking, fatty acid metabolism, sterol metabolism, triacylglycerol synthesis, phospholipid metabolism, lipid droplet biogenesis, and lipid signaling. Defining the role of HIF1 in lipid metabolism is crucial to understand the pathophysiology of lipid in disease and may help us to identify additional target sites for drug development. This review would shed light on our understanding of the critical role of HIF1 in lipid metabolism

    Model Controlled Prediction: A Reciprocal Alternative of Model Predictive Control

    Get PDF

    Effects of Cations and PH on Antimicrobial Activity of Thanatin and s-Thanatin against _Escherichia coli_ ATCC25922 and _B. subtilis_ ATCC 21332

    Get PDF
    Thanatin and s-thanatin were insect antimicrobial peptides which have shown potent antimicrobial activities on a variety of microbes. In order to investigate the effect of cations and pH on the activity of these peptides against Gram-negative bacteria and Gram-positive bacteria, the antimicrobial activities of both peptides were studied in increasing concentrations of monovalent cations (K^+^ and Na^+^), divalent cations (Ca^2+^ and Mg^2+^) and H^+^. The NCCLS broth microdilution method showed that both peptides were sensitive to the presence of cations. The divalent cations showed more antagonized effect on the activity against Gram-negative bacteria than the monovalent cations, since the two peptides lost the ability to inhibit bacterial growth at a very low concentration. In addition, the activities of both peptides tested were not significantly affected by pH. Comparing to studies of other antibacterial peptide activities, our data support a hypothesis that positive ions affect the sensitivity to cation peptides

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202
    corecore